

CINEMATIQUE DU POINT

MRU - MRUA

Chapitre 10

EXERCICES

Feuille n°2

La résolution des exercices se fera de façon <u>rigoureuse</u>, <u>méthodique</u> et <u>précise</u> : pas de produit en croix, pas de « petits calculs intuitifs ». De la méthode, de la méthode, de la méthode...

Exercice 1

Une voiture se déplace sur une route droite. La voiture est assimilée à un point et la route à un axe nommé \vec{x} . La position de la voiture sur l'axe est repérée par son abscisse x qui varie au cours du temps noté t. On donne $x(t) = 2 \cdot t - 3$.

- a) Rechercher l'équation de la vitesse v(t).
- b) Rechercher l'équation de l'accélération a(t).
- c) En déduire le type de mouvement : \square MRU

☐ MRUA car : _____

d) Compléter le tableau suivant :

t(s)	0	1	2	3	4	5	6
x(t)(m)							
$v(t)(m\cdot s^{-1})$							
$a(t)(m\cdot s^{-2})$							

	→
e)	Tracer ci-dessous la position de la voiture sur l'axe x pour $0 \le t \le 6 s$.

 $\vec{x}(m)$

																`	
						ĺ											+
_	-2	-	-	-	_	-	-			_	_	-	-	-	-	-	

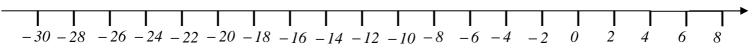
f) Tracer les graphes des positions, vitesses et accélération pour $0 \le t \le 6 \ s$.

Exercice 2

On donne pour la voiture de l'exercice précédent l'équation de la vitesse : $v(t) = -2 \cdot t + 1$. On précise qu'à t = 3 s, la position de la voiture est x(3) = 1 m (condition particulière en position).

- a) Rechercher l'équation de l'accélération a(t).
- b) Rechercher l'équation de la position x(t).
- c) En déduire le type de mouvement :

 MRU


☐ MRUA

car:

d) Compléter le tableau suivant :

t(s)	0	1	2	3	4	5	6
x(t)(m)							
$v(t)(m\cdot s^{-1})$							
$a(t)(m\cdot s^{-2})$							

e) Tracer ci-dessous la position de la voiture sur l'axe \vec{x} pour $0 \le t \le 6 \ s$.

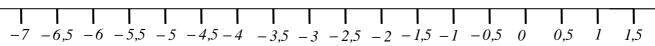
f) Tracer les graphes des positions, vitesses et accélération pour $0 \le t \le 6 \ s$.

x(m)

Exercice 3

On donne pour la voiture de l'exercice précédent l'équation de l'accélération : a(t) = 3 . On donne les conditions particulières : v(2) = 0 (condition en vitesse) et x(4) = 2 m (condition en position).

- a) Rechercher l'équation de la vitesse v(t).
- b) Rechercher l'équation de la position x(t).
- c) En déduire le type de mouvement : ☐ MRU ☐


☐ MRUA car :

d) Compléter le tableau suivant :

t(s)	0	0,5	1	1,5	2	2,5	3
x(t)(m)							
$v(t)(m\cdot s^{-1})$							
$a(t)(m\cdot s^{-2})$							

e) Tracer ci-dessous la position de la voiture sur l'axe \vec{x} pour $0 \le t \le 3 \ s$.

f) Tracer les graphes des positions, vitesses et accélération pour $0 \le t \le 3 \ s$.

Exercice 4

Une voiture (1) se déplace sur l'axe \vec{x} moyennant l'équation de vitesse $v_t(t) = 6 \cdot t - 2$.

Une voiture (2) se déplace sur ce même axe \vec{x} moyennant l'équation de vitesse $v_2(t) = t + 5$.

On donne $x_1(0) = 0$ et $x_2(0) = 10 \ m$.

- a) Rechercher l'équation de l'accélération $a_I(t)$.
- b) Rechercher l'équation de la position $x_I(t)$.
- c) Rechercher l'équation de l'accélération $a_2(t)$.
- d) Rechercher l'équation de la position $x_2(t)$.
- e) Rechercher les dates auxquelles les voitures se rencontrent pour $t \in [0;+\infty[$.
- f) Rechercher l'ensemble des lieux auxquelles les voitures se rencontrent pour $t \in [0;+\infty[$.

Exercice 5 (pour aller plus loin...)

Un point se déplace selon une trajectoire définie par $x(t) = cos(\omega \cdot t + \varphi)$ avec $\omega = 2 \ rad \cdot s^{-1}$ et $\varphi = \frac{\pi}{6} \ rad$.

- a) Rechercher l'équation de la vitesse v(t).
- b) Rechercher l'équation de l'accélération a(t).
- c) Rechercher les dates auxquelles la position est nulle pour $t \in [0;+\infty[$.